Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish.
نویسندگان
چکیده
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face.
منابع مشابه
An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning.
Fibroblast growth factor (Fgf) proteins are important regulators of pharyngeal arch development. Analyses of Fgf8 function in chick and mouse and Fgf3 function in zebrafish have demonstrated a role for Fgfs in the differentiation and survival of postmigratory neural crest cells (NCC) that give rise to the pharyngeal skeleton. Here we describe, in zebrafish, an earlier, essential function for Fg...
متن کاملAlcama mediates Edn1 signaling during zebrafish cartilage morphogenesis.
The zebrafish pharyngeal cartilage is derived from the pharyngeal apparatus, a vertebrate-specific structure derived from all three germ layers. Developmental aberrations of the pharyngeal apparatus lead to birth defects such as Treacher-Collins and DiGeorge syndromes. While interactions between endoderm and neural crest (NC) are known to be important for cartilage formation, the full complemen...
متن کاملAn essential role for zebrafish Fgfrl1 during gill cartilage development
The vertebrate craniofacial skeleton develops via a complex process involving signaling cascades in all three germ layers. Fibroblast growth factor (FGF) signaling is essential for several steps in pharyngeal arch development. In zebrafish, Fgf3 and Fgf8 in the mesoderm and hindbrain have an early role to pattern the pouch endoderm, influencing craniofacial integrity. Endodermal FGF signaling i...
متن کاملFunctional analysis of the evolutionarily conserved cis-regulatory elements on the sox17 gene in zebrafish.
The Sox17 is an important transcription factor for endodermal cells (Danio rerio). According to the predictions of the GRNs, based on perturbation experiments and literature search, the sox17 gene is engaged with two other regulatory genes, sox32 and pou5f1. Nodal signaling operated on several endoderm-specific transcription factors to determine the endoderm specification. In addition, endoderm...
متن کاملRegulation of avian cardiogenesis by Fgf8 signaling.
The avian heart develops from paired primordia located in the anterior lateral mesoderm of the early embryo. Previous studies have found that the endoderm adjacent to the cardiac primordia plays an important role in heart specification. The current study provides evidence that fibroblast growth factor (Fgf) signaling contributes to the heart-inducing properties of the endoderm. Fgf8 is expresse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 143 11 شماره
صفحات -
تاریخ انتشار 2016